### **RFID Security** Selected Areas of LF and HF Applications

#### Tomáš Rosa

crypto.hyperlink.cz



#### Part ONE RFID Physical Layer Recalled

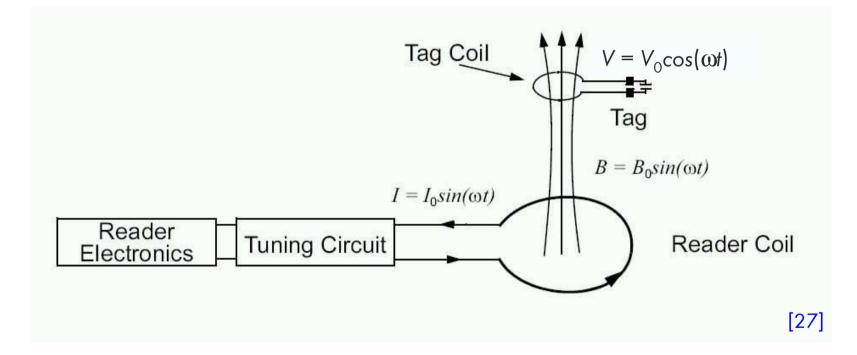
#### Radio Classification of Transponders

| Band                          | Sub-class              | Typical sort              | Typical deployment                                          | Operation<br>Distance<br>(order) |
|-------------------------------|------------------------|---------------------------|-------------------------------------------------------------|----------------------------------|
| <b>LF</b><br>(100 to 150 kHz) | -                      | Memory card               | Access control,<br>immobilizer,<br>implant,<br>loyalty card | cm to<br>m(*)                    |
| <b>HF</b><br>(13.56 MHz)      | Vicinity<br>ISO 15693  | Memory card               | Access control,<br>skipass,<br>loyalty card                 | cm to m                          |
|                               | Proximity<br>ISO 14443 | Contact-less<br>smartcard | Access control,<br>payment card,<br>e-passport              | cm                               |
| <b>UHF</b><br>(430- 2450 MHz) | -                      | Memory card               | Stock control                                               | cm to 10s m                      |

(\*) rare configurations with low consumption read-only cards and high power, high dimension readers

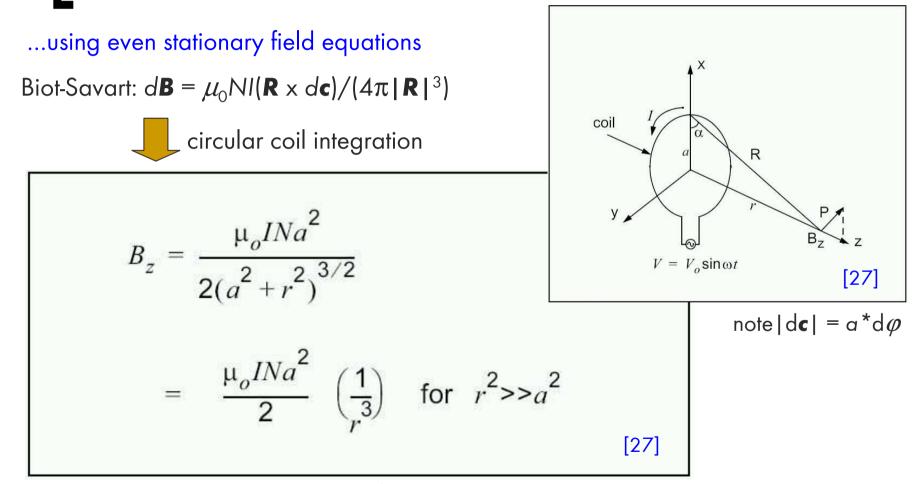
## Contact(less) Smartcard

| Application layer            | ISO 7816-4 and higher |                 |                 |
|------------------------------|-----------------------|-----------------|-----------------|
| Transport layer              |                       | ISO 14443-4     |                 |
| Data link layer              | ISO 7816-3            | ISO<br>14443A-3 | ISO<br>14443B-3 |
| Physical layer               |                       | ISO<br>14443A-2 | ISO<br>14443B-2 |
| Electromechanical properties | ISO 7816-1, 2         | ISO 14443-1     |                 |


contact interface

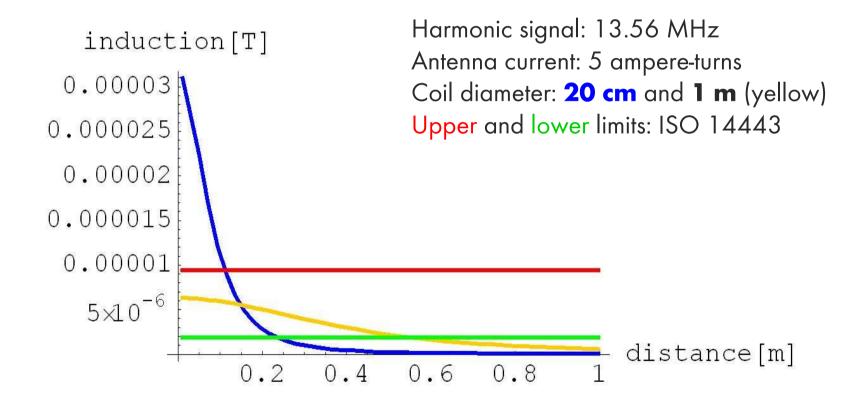
contactless interface

### LF & HF Physical Layer

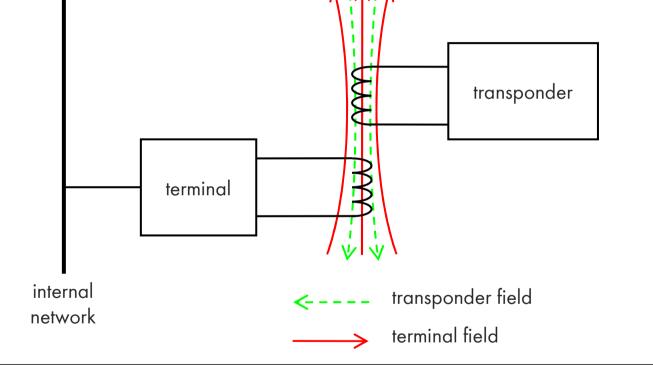

- Employs inductive coupling in so-called near field of the transmitter at circa 125 kHz (LF) or 13.56 MHz (HF).
  - Field equations are reduced considerably, especially wave effects can be omitted [7], [11], [31], [41].
    - This is true for an ordinary operation. An attacker trying to expose limits of this communication may be facing a "different" physics.
    - Threshold is approx.  $\lambda/2\pi$ ,  $\lambda \cong 300/f$  [m, -, MHz]
  - Arrangement "transponder antenna terminal antenna" can be viewed as a high frequency transformer.
    - Comprehensive description is given in [11].
    - Such a setup <u>differs from UHF RFID [7], [11] significantly</u>, so care must be taken when interpreting distance ranges experiments, etc.

#### Terminal – Transponder In LF/HF Energizing

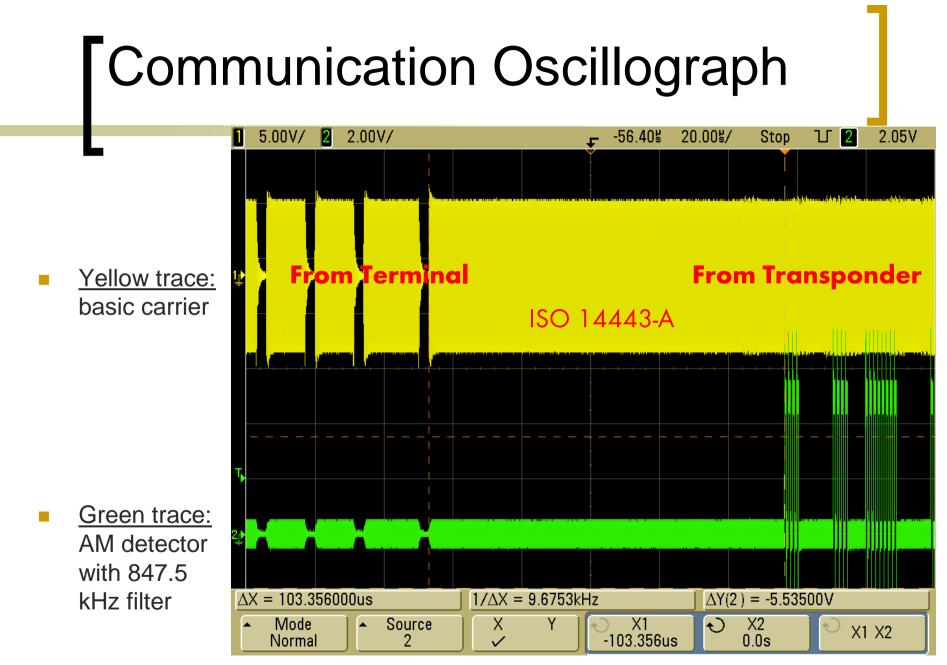



The tag itself is assumed to have no autonomous power source. It gets the energy for computation solely from the terminal's field.

### Field Induction Estimation




Optimum antenna diameter:  $a = r^* \sqrt{2}$ , where *r* is the communication distance.


### B<sub>z</sub> Induced by a Circular Coil



# Terminal – Transponder In LF/HF Data Communication



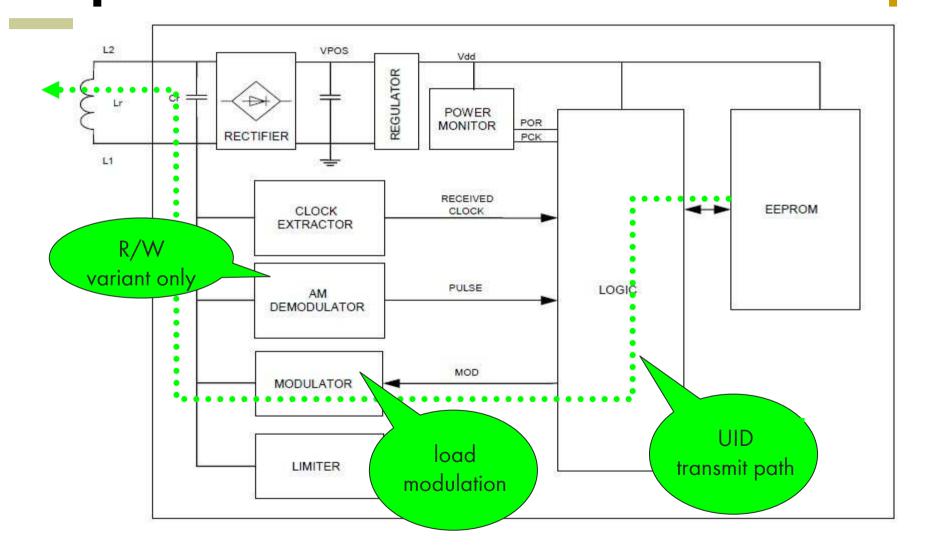
<u>Terminal:</u> direct amplitude modulation of the basic carrier <u>Transponder:</u> load modulation resulting in indirect amplitude/phase modulation of the basic carrier



# When the Distance Matters (LF/HF)

| Method                                | Distance     |
|---------------------------------------|--------------|
| Active communication with transponder | dozens of cm |
| Passive reception - both ways         | units of m   |
| Passive reception - terminal only     | dozens of m  |
| Active communication with terminal    | dozens of m  |

#### Part TWO Access Control Systems


# Penetration Test Scope

- The aim was to try to make a functionally equivalent duplicate of an existing access control card.
  - That is a theft of identity of some employee or temporary worker or an external supplier, etc.
  - See [49] for particular cases reported (CZ).

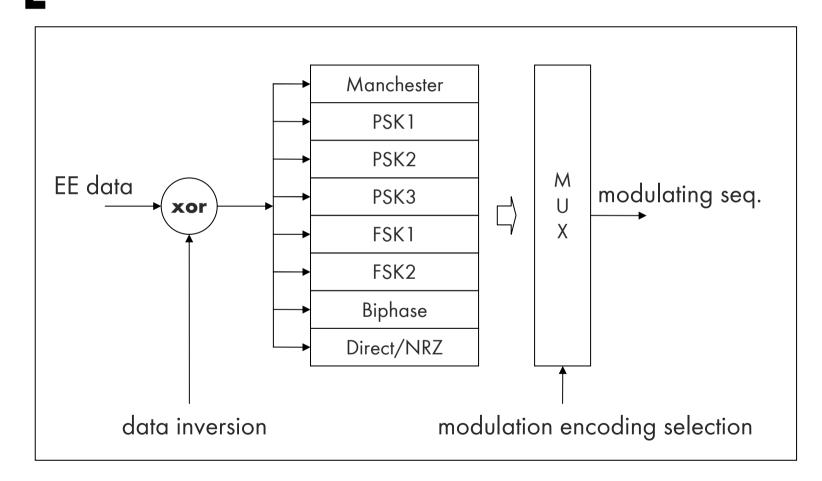
## Unique-ID LF Transponders

- Serial memory programmed during the chip manufacturing or personalization phase
- When in the terminal (reader) field, they transmit the memory content automatically in a cycle
- There is no communication origin authentication
  - The transponder talks to anybody
  - The terminal listens to anybody
- Examples: EM Unique, HID Prox, INDALA

### **Unique-ID** Transponder Overview



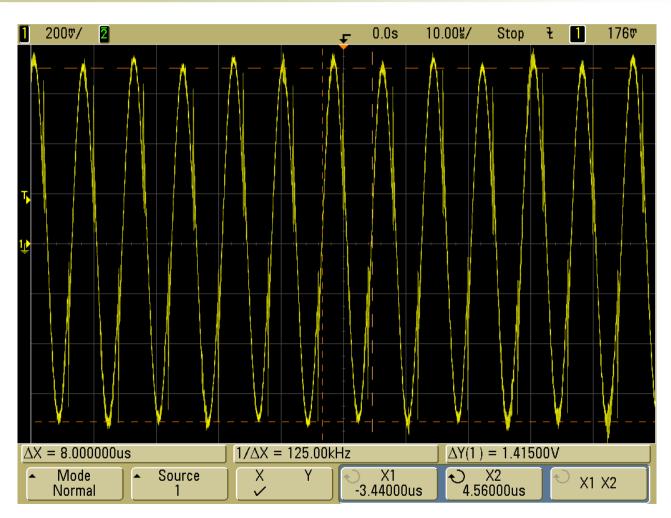
### Where the Security Comes From


- It is important to note what the attacker really does not have to do:
  - To understand the meaning of the data stored in the transponder memory. The data can even be encrypted (and it still does not matter here).
- Necessary and sufficient condition to make the duplicate of the transponder is:
  - To effectively describe the control sequence driving the load modulator and to repeat this action in the terminal (reader) field later on.

# Q5 – Queen of the LF Band

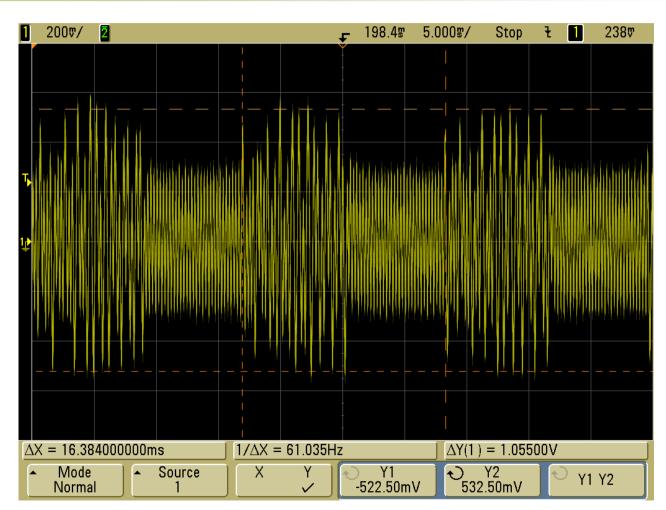
- Programmable LF transponder called "Q5"
  - 224 user defined EEPROM bits (330 b in total)
  - wide support of modulation and encoding schemes
- Variable chip packing key fob, ISO card, etc.
- It was able to emulate all those LF "Unique-ID" transponders tested, so far
- Widely available on the market ③
  - o E.g.

http://www.therfidshop.com/product\_info.php?products\_id=373

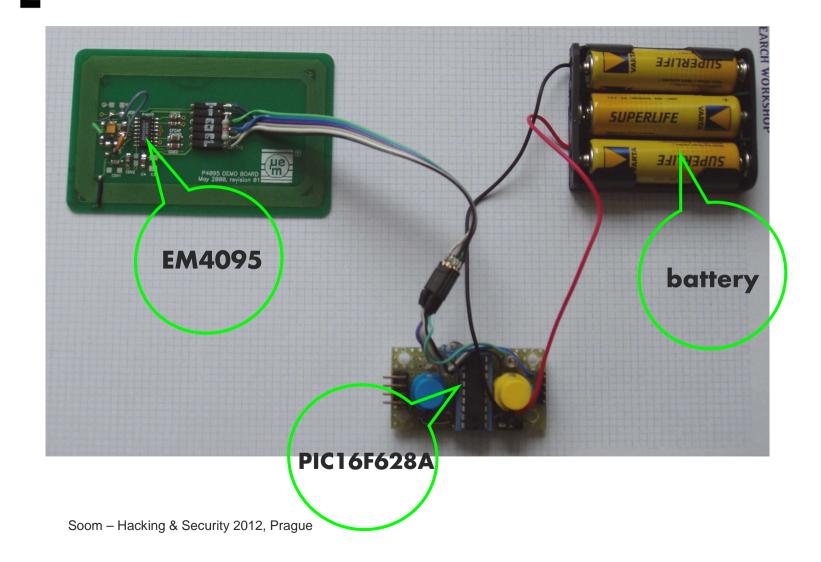

# Q5 – Output Encoder Part



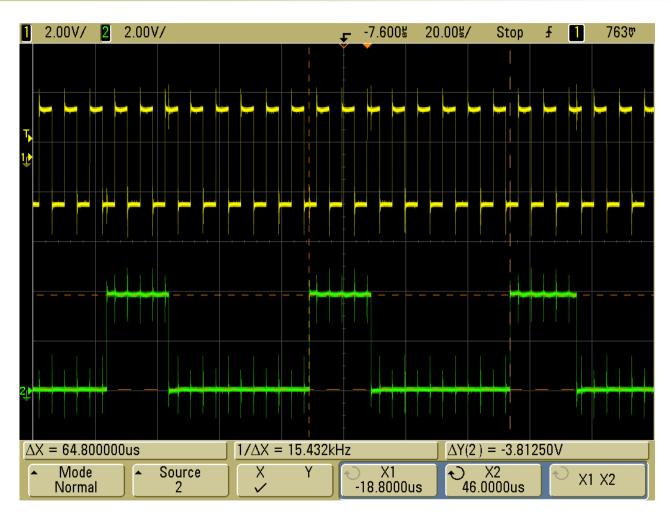
# Using Q5 for an Attack


- Phase I describing the modulating seq. of the original transponder
  - In theory, this can be a very hard problem, but...
  - ... in practice, we seldom meet something "unique".
  - Let us be inspired by all those possible Q5 configurations!
- Phase II making the duplicate
  - We store the modulating seq. into Q5 memory and program its output encoder/modulator...

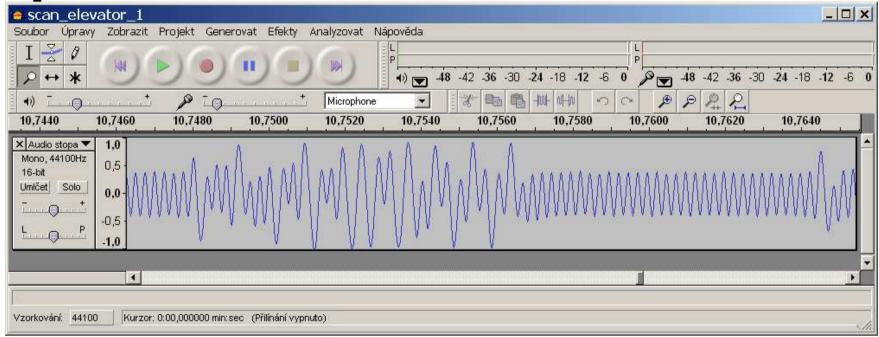
# LAB: The Effect of Using a Subcarrier Frequency




Soom – Hacking & Security 2012, Prague


#### LAB: Subcarrier with Phase Modulation




### LAB: Ad Hoc Spyware



#### LAB: Frequency Modulation Disclosed by EM4095 (green)



#### Another Practical Scenario: Eavesdropping in Elevator



LF band transponder data intercepted while its holder was authenticating to the reader in an elevator. Distance: cca 0,5 m. Receiver: Sangean ATS 909W.

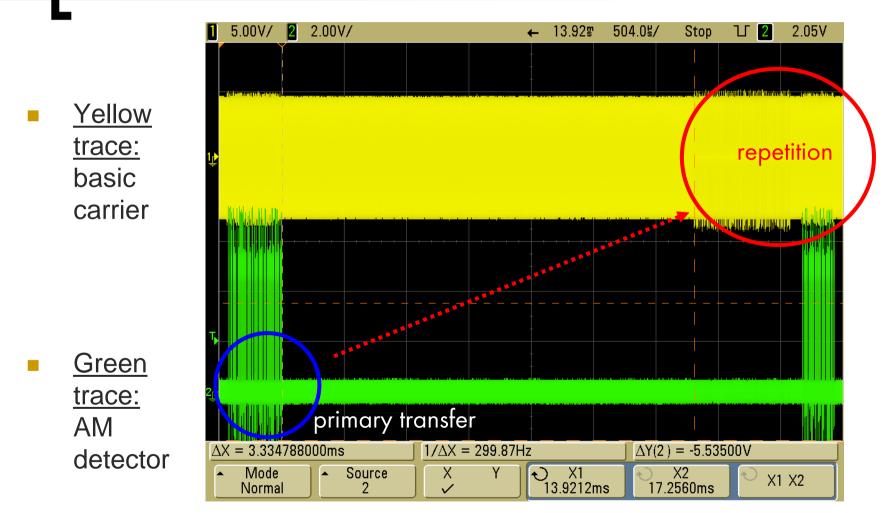
# Disclosing "The Secret"...

- EM Unique
  - o direct manchester encoding, bitrate *f*/64, 64 bits in total
  - Q5 configuration word: 60 01 F0 04
- INDALA (1 particular setup)
  - subcarrier f/2 with phase shift keying, modulating sequence length of 64 bits
  - Q5 configuration word: 60 00 F0 A4
- HID Prox (1 particular setup)
  - 2 subcarriers f/8 and f/10 with frequency shift keying, modulating sequence length of 96 bits
  - Q5 configuration word: 60 01 80 56

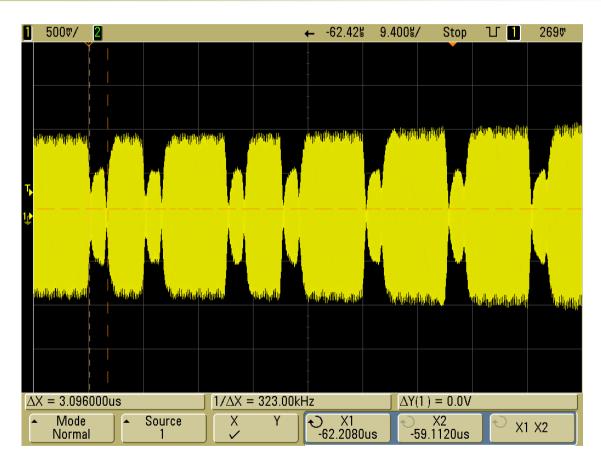
# MIFARE Classic

Two basic ways of usage:

- So-called "UID only" mode which is functionally equivalent to the unique-ID transponders.
  - Easy to break using a transponder emulator.
- So-called "cryptographic" mode that uses e.g. mutual authentication of transponder and terminal.
  - Broken totally in 2007-2009. At present, there are dozens of practically feasible devastating attacks.

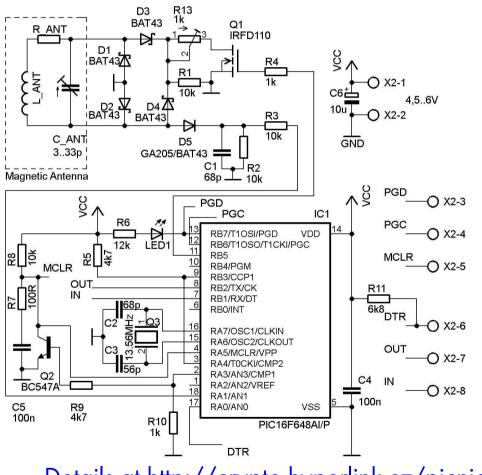

# MF Classic Cryptanalysis

- Implications
  - Secret key recovery basing on an interaction with the terminal (reader) only
  - Secret key recovery from an intercepted terminal-transponder relation (it is enough to hear the terminal part only – feasible dozens of meters away)
  - Secret key recovery basing on an interaction with the transponder only
    - Totally devastating for a huge amount of micropayment and public transportation applications.

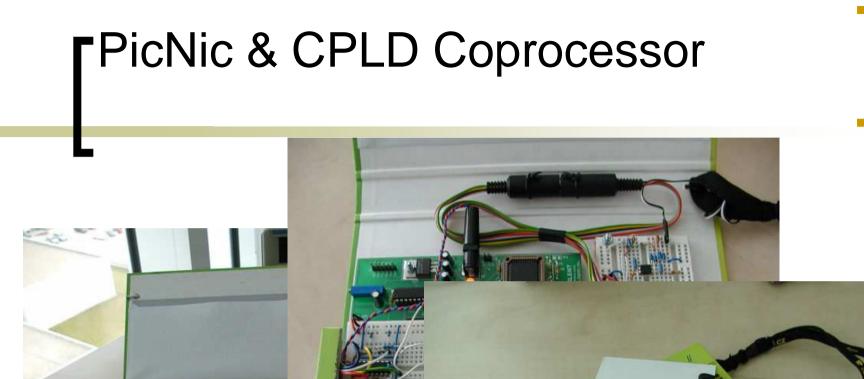

# MIFARE "UID only"

- In practice, huge amount of MF installations use this approach.
- In many aspects, the security of this approach is even worse than of the transponders in LF discussed before.
  - The communication protocol is standardized (ISO14443A).
  - UID interception is possible up to dozens of meters away.
  - Interestingly, similar security problem is already solved for UHF transponders [7].
- Only one obstacle here there is no Q5 analogue for the HF band...
  - We need to build our own emulator e.g. PicNic.

## **HF UID Interception**




### **Real Life Experiment**



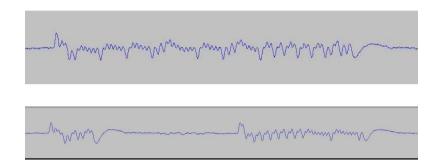

Receiver AOR AR8600MK2, HF output at i.f. 10,7 MHz. Distance cca 2 m, at least two readers in the field.

### PicNic HF Transponder Emulator



Details at http://crypto.hyperlink.cz/picnic.htm






|      | Danovy doklad c.: PD                             | -08-002-5396                                 | F   |  |  |
|------|--------------------------------------------------|----------------------------------------------|-----|--|--|
|      | DUZP: 1.12.08                                    |                                              |     |  |  |
|      | <u> </u>                                         | s.r.o.                                       | İ   |  |  |
|      |                                                  | NUZ CON STAT SALESSO 1000296 19305 - 2005200 | t t |  |  |
|      | PS-08-002-9080                                   |                                              | C   |  |  |
|      | · · · · · · · · · · · · · · · · · · ·            |                                              |     |  |  |
| UID  | 1x Zampionova polevka<br>1x Cocka se sazenym vej | 29,00 A<br>cem 69,00 A                       | C   |  |  |
| here | 1x Bonaqua neperliva O,                          | 전화되는 전화 전화 전화 전화                             | C   |  |  |
|      | Sleva 5%                                         | -6,00                                        |     |  |  |
|      | CELKEM                                           | 112,00                                       |     |  |  |
|      | (x,y,y,z,y,x,y,z,y,y,z,z,y,y,y,z,y,y,z,y,z       | e e encolector e como o contenente e encol   | ĥ   |  |  |
|      | 3cf2e2da9000 15 ROSA TOMAS                       |                                              | t   |  |  |
| 8    | Zam. Karta 🥂                                     | 112.00                                       | (   |  |  |
|      | 9% DPH/VAT 9,30 (1                               | 02,70) 112,00 A                              | t   |  |  |
|      | Puvodni zustatek:                                | 395,00                                       | , i |  |  |
|      | Novy zustatek:                                   | 283,00                                       | C   |  |  |

esides paying the canteen, e same card pens the office bor. Of urse... o, lets feel the ower of chnology nvergence ke a lunch nd go for a alk around the office...  $\bigcirc$ 

## Immobilizers – Next Target?





125 kHz/WFM receiver AOR AR8200MK3 co-driver's seat position





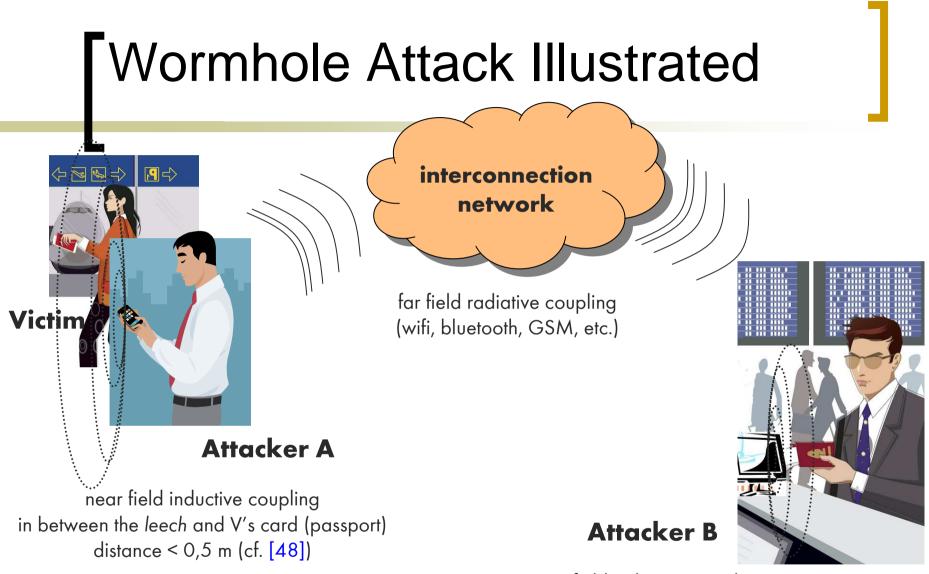




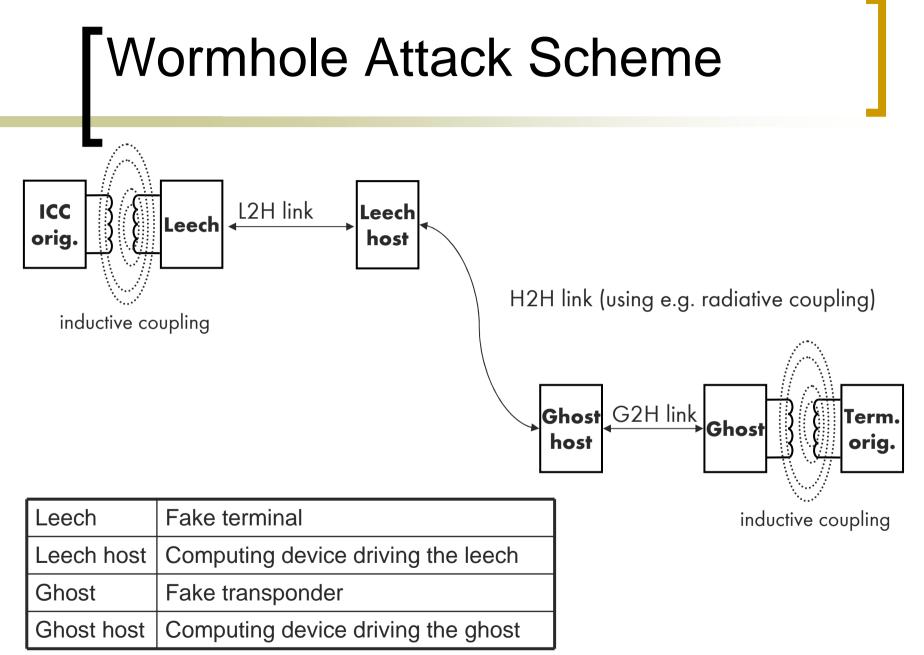


*It concerns almost any car of any manufacturer.* Soom – Hacking & Security 2012, Prague

#### Part THREE RFID Wormholes


### Wormhole (Relay Channel)

Let the RFID wormhole be any method enabling communication in between an out-of-range application transponder and the terminal.


 However, the sole presence of a transponder at the terminal is often directly linked to somebody's intension to e.g. open door, pay a bill, undergo electronic passport check, etc.

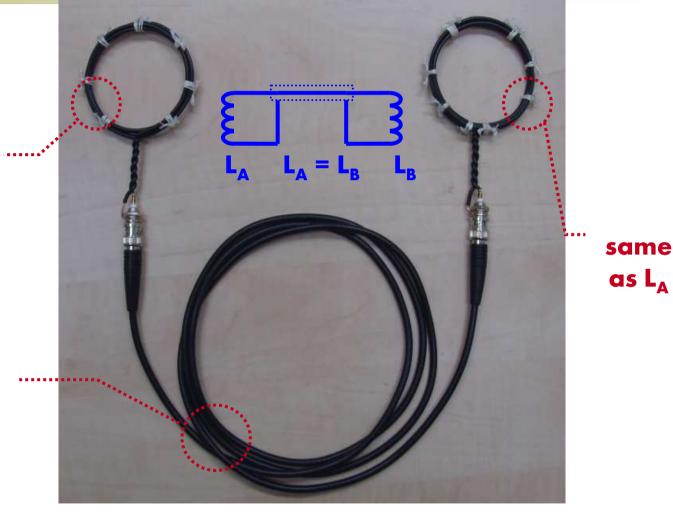
### Distance Bounding Protocols

- These are special kind of cryptographic protocols, that can in theory protect against wormhole attacks [3].
  - They are, however, seldom known and even more rarely used in practice.
- Their cornerstone principle is really nicely illustrated by the excellent, two-sentence-long conclusion of Beth and Desmedt [2] (1990).
  - "Because the speed of light is finite and constant we have provided a practical solution to the mafia and terrorist fraud. Its applications go beyond identification."



near field inductive coupling in between the ghost and the inspection terminal




Soom - Hacking & Security 2012, Prague

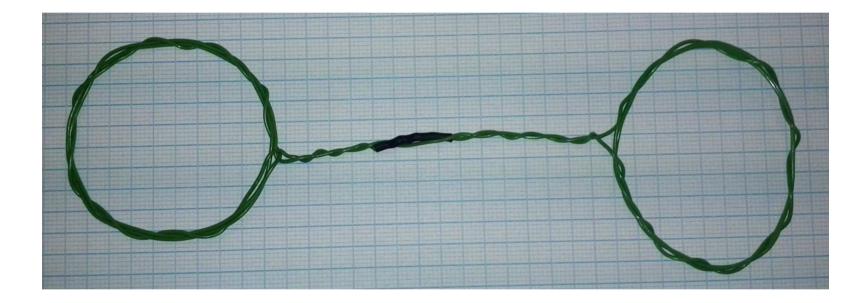
### Do-It-Yourself HF Wormhole

L<sub>A</sub>: 4 turns of plain CUL wire, coil Ø 75 mm

> coax. RG 58 length  $< \lambda'/2\pi$ (tested  $\leq$  2m)

> > Soom – Hacking & Security 2012, Prague




### Wormhole In Access Control



Real successful experiment with the DIY wormhole in HF RFID access control.

Soom – Hacking & Security 2012, Prague

# Wormhole for NFC Debugging



- Principal idea: Symmetric coils of 3 5 turns of CUL wire.
  - Later on, the coils can be deformed slightly on purpose to fit e.g. the NFC antenna geometry of a smart phone (cf. bellow).

#### Simple Antenna Extender Just Put the Stuff As-Is on Our Coils



 Google Nexus S (I9023) with Android 2.3.6 and TagInfo app working as passive-mode initiator with Prague's citizen card Opencard.

Soom – Hacking & Security 2012, Prague

## No More "96" Positions!



 Two Google Nexus S (19023) with Android 2.3.6 working in reader-toreader mode (user tag transfer).

## Wormhole In Car Entry

- Interesting practical attack on keyless entry and start systems of modern cars was published in [12].
  - Focus on combined semi-passive LF/UHF transponder.
- By using LF wormhole, an attacker convinced the original transponder to send door opening request in UHF band.
  - The LF band circuit can be seen as a kind of implicit distance bounding protocol that should have ensured proximity distance between the key and the car.
  - Attack [12] shows, however, that this simple arrangement is weak.

#### Part FOUR Hacking Into & With NFC

Soom - Hacking & Security 2012, Prague

### NFC at Glance

NFC stands for Near Field Communication

- Device equipped with an NFC controller can work in the following modes:
  - Passive-mode initiator (or just a "reader")
  - Passive-mode target (or just a "transponder")
  - Active-mode initiator/target (or just "reader-to-reader")



Soom – Hacking & Security 2012, Prague

## NFC Standards

- ISO 18092 specifies the NFCIP-1 core protocol.
  - In fact, several parts duplicate the ISO 14443 A or FeliCa, but with a rather "innovative" wording.
  - Attention the word "passive" does no longer equal to "without autonomous power source" here.
  - It is used to address those ISO 14443 A or FeliCa compatible modes in general (reader as well as tag).
- Furthermore, ISO 21481 addresses possible RF interference issues.
  - Handles coexistence of devices and operational modes following other standards occupying 13.56 MHz.
  - Those mainly are ISO 14443 and ISO 15693.
- Besides ISO, there is a lot of industry standards available at <u>http://www.nfc-forum.org/specs/</u>.

## NFC vs. RFID

- Correct to say NFC is an inductively coupled <u>communication interface</u> that shares many technical features with HF RFID.
  - This goes such far that NFC devices can directly play the role of certain HF RFID transponders or terminals (readers).
  - Of course, NFC also shares the general security properties related to communication interception, wormhole phenomenon, etc.

## NFC vs. RFID

- NOT correct to say that NFC directly equals to HF RFID.
  - There is, for instance, the reader-to-reader communication mode and a huge amount of protocols of upper layers [57] that are far beyond the established HF RFID.
- NEITHER correct, on the other hand, to say that NFC has nothing in common with RFID.
  - This is something Google tries to pretend to perhaps make NFC more sexy and harmless marketing word [42].
  - Such a view would, besides the others, hide the applications of HF RFID physical security analyses whose generalizations do (of course!) apply to NFC as well.
  - Perhaps, Google also wanted to emphasize NFC differs from UHF RFID significantly, which is true (in the same way as for HF RFID).

### NFC and ISO 14443

- NFC-equipped device can address contactless smartcards world in two ways:
  - As a terminal ("reader")
    - ISO 14443 A passive-mode initiator
  - As a transponder emulator
    - ISO 14443 A passive-mode target

## NFC Controllers

Handle NFCIP-1 protocol implementation.

- Gradually replace previous generation of "terminalonly" RFID controllers used in contactless smartcard readers.
- Therefore, we are slowly approaching the situation where almost any "reader" will be able to serve the role of a smartcard emulator as well.
- Several manufacturers provide NFC controllers.
  - NXP's chipset seems to be the most popular.
  - ST and Inside Contactless provide similar chips, too.
  - Unfortunately, their interfaces are not compatible.

## **NXP's Controllers Overview**

| Chip  | Interface     | PCD           | PICC        | Level 4    |
|-------|---------------|---------------|-------------|------------|
|       |               | Mode          | Mode        | Framing    |
| PN531 | I2C, SPI, USB | ISO 14443-A   | ISO 14443-A | PCD only   |
| PN532 | I2C, SPI      | ISO 14443-A/B | ISO 14443-A | PCD & PICC |
| PN533 | USB           | ISO 14443-A/B | ISO 14443-A | PCD & PICC |

- Table presents summary of NFC controllers of PN53x family made by NXP [32].
  - Simplified viewpoint based on wormhole attacks on ISO 14443 [48].
  - Further details can be also found in [28].
  - Although variant-A-only support in PICC mode seems to be a limiting condition, it is actually not the case (cf. elaboration given in [48]).

### **NFC** and Mobile Phones

- At this moment, several incompatible architectures exist.
  - We can call them "generation zero" devices.
  - Interesting survey is given in [40].
- Approaching version of "generation one" devices shall:
  - Include special HW module called CLF (Contactless Frontend).
  - Interconnect CLF directly with SIM card, so the SIM will serve the role of a *secure element*.
  - Also provide certain monitor connection in between CLF and phone's main processor.

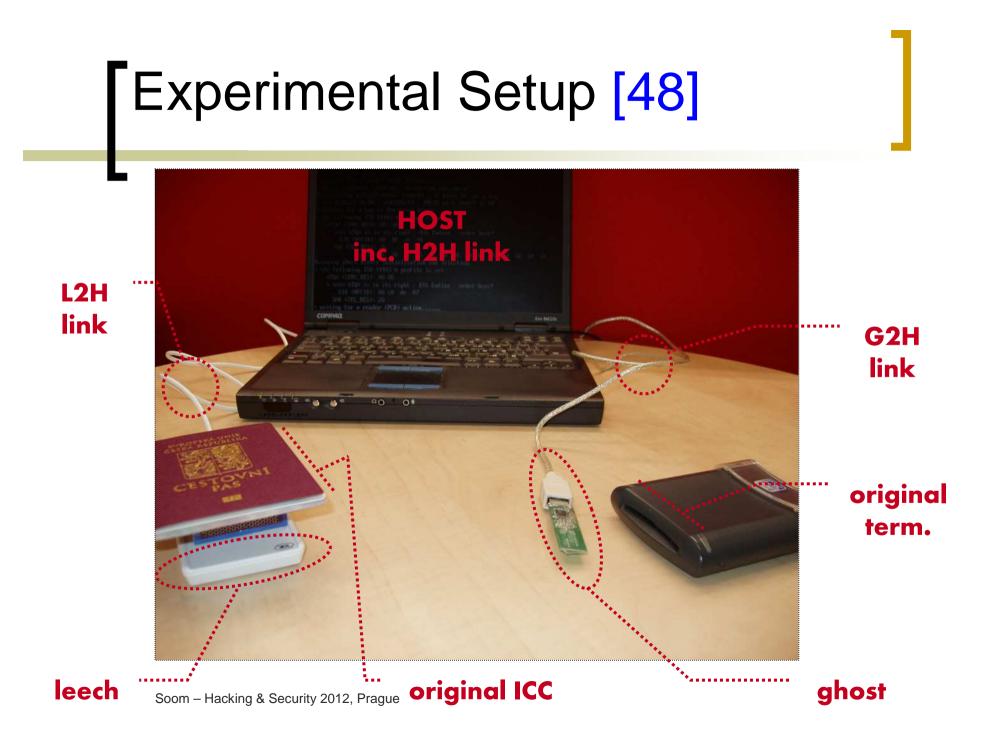
## CLF

- Provides SWP (Single Wire Protocol) interface:
  - ETSI TS 102 613 (physical and data link layer),
  - ETSI TS 102 622 (host controller interface HCI).
- At present, CLF can be bought separately.
  - Cf. e.g. <u>www.bladox.com</u>
  - SWP<->USB interface converter is one of those wanted technical projects, since CLF seems to be a valuable tool for security analysts in itself.
  - On the other hand, it is still unclear what kind of benefit the standalone CLF could provide over NFC-equipped reader.
  - As far as we can say, most CLFs will be based on the next generation of NFC controllers - e.g. PN544 that seems to be further encapsulation of widely accessible PN53x family cores.

#### NFC In Smart Phone OS (as of January 2012)

- The most systematic treatment can be found in Google Android.
  - Especially since Ice Cream Sandwich (4.0), but it already started with Gingerbread 2.3.3 [43].
  - Clearly, Google strives to become the leader in this area.
- Also interesting support in some BlackBerry devices (e.g. BB 9900 with BB OS API v7.0.0 [47], [59]).
- Apple seems to wait with iOS on how Google will eventually do [44], [45].
  - External NFC modules can be attached as accessories to iPhone [46].
    - This should principally work for iPad as well.

## Android NFC


- The good points
  - Easy to learn, simple to use API.
  - Encapsulates even the communication with ISO 15693 transponders (initiator mode only).
- What is not so good
  - There is no support for passive-mode target.
  - Neither does it seem Google is willing to release it in public.
  - Apparently, this mode is "reserved" for first class citizens like banks, etc.
  - RIM, on the other hand, managed to provide this interface even to "common naughty" programmers [47], [59].

#### Mobile + NFC + Malware = RISK

- Cf. Security and Privacy in Smartphones and Mobile Devices (SPSM) 2011 [58].
  - Malware running on a smart phone scans for RFID cards in its neighborhood.
    - Link occurs e.g. when a payment card and the mobile device are carried in the same pocket...
  - When it finds an interesting card, it interconnects that card with a remote controlling server.
  - Depending on the card type, the server decides on how to utilize the relayed connection – e.g. for making a contactless payment transaction.

### libnfc at Glance

- According to the libnfc authors:
  - "...libnfc is the first free NFC SDK and Programmers API released under the GNU Lesser General Public License. It provides complete transparency and royalty-free use for everyone..." [28].
- As far, as we can confirm, the aforementioned statement is true.
  - It is quite easy to (even unintentionally) buy an NFCequipped device, while, on the other hand, it is considerably harder to get full programmer's documentation and support for it.
  - o libnfc commendably dares to remove this barrier.



### Wormholes in Practice

- Because of the wide availability of NFC controllers and libraries, the following is true:
  - Using generally available computing devices and program codes, it is practically easy to mount a wormhole attack in a typical system accepting ISO 14443 contactless smartcards.

## Conclusion

- RFID security still deserves great attention across all frequency bands.
  - Security mechanisms employed for UHF are roughly comparable with LF. Furthermore, there is considerably increased threat of remote attacks [7].
- Hopefully, the following initiatives might contribute:
  - Low power microcontrollers,
  - Lightweight cryptography,
  - o Business behind NFC and contactless payments,
  - Worldwide privacy protection effort.

# Thank You For Attention



Soom – Hacking & Security 2012, Prague

Tomáš Rosa crypto.hyperlink.cz

- 1. Axelson, J.: USB Complete: Everything You Need to Develop USB Peripherals, 3rd Ed., Lakeview Research LLC, 2005
- 2. Beth, T. and Desmedt, Y.: *Identification Tokens Or: Solving the Chess Grandmaster Problem*, In Proc. of CRYPTO '90, pp. 169-176, Springer-Verlag, 1991
- 3. Brands, S. and Chaum, D.: *Distance-Bounding Protocols,* In Proc. of EUROCRYPT '93, pp. 344–359, Springer-Verlag, 1994
- 4. Desmedt, Y.: *Major Security Problems with the 'Unforgeable' (Feige)-Fiat-Shamir Proofs of Identity and How to Overcome Them*, SecuriCom '88, SEDEP Paris, pp. 15-17, 1988
- 5. Desmedt, Y., Goutier, C., and Bengio, S.: *Special Uses and Abuses of the Fiat-Shamir Passport Protocol*, In Proc. of CRYPTO '87, pp. 16-20, Springer-Verlag, 1988
- 6. Development of a Logical Data Structure LDS for Optional Capacity Expansion Technologies, ICAO, ver. 1.7, 2004
- 7. Dobkin, D.: *The RF in RFID: Passive UHF RFID in Practice*, Elsevier Inc., 2008
- 8. Drimer, S. and Murdoch, S.-J.: *Relay Attack on Card Payment Vulnerabilities and Defences*, Conference 24C3, December 2007

- 9. EMV Contactless Specifications for Payment Systems, *EMV Contactless Communication Protocol Specification*, v. 2.0.1, July 2009
- 10. Finke, T. and Kelter, H.: *Abhörmöglichkeiten der Kommunikation zwischen Lesegerät und Transponder am Beispiel eines ISO14443-Systems*, BSI German Federal Office for Information Security, 2005
- 11. Finkenzeller, K.: *RFID Handbook Fundamentals and Applications in Contactless Smart Cards and Identification*, John Willey and Sons Ltd., 2003
- 12. Francillon, A., Danev, B., and Čapkun, S.: *Relay Attacks on Passive Keyless Entry* and Start Systems in Modern Cars, IACR ePrint Report 2010/332, 2010
- 13. Hancke, G.: *Practical Eavesdropping and Skimming Attacks on High-Frequency RFID Tokens*, Journal of Computer Security, accepted to be published 2010
- 14. Hancke, G.: *Eavesdropping Attacks on High-Frequency RFID Tokens*, 4th Workshop on RFID Security (RFIDSec), July 2008
- 15. Hancke, G.: *Practical Attacks on Proximity Identification Systems (Short Paper)*, In Proc. of IEEE Symposium on Security and Privacy, pp. 328-333, 2006
- 16. Hancke, G.-P.: *A Practical Relay Attack on ISO 14443 Proximity Cards*, Tech. Report, 2005

- 17. Hancke, G.: *Research Homepage*, <u>http://www.rfidblog.org.uk/research.html</u>
- 18. Hancke, G.-P. and Kuhn, M.-G.: *An RFID Distance Bounding Protocol*, In SecureComm '05, pp. 67-73, IEEE Computer Society, 2005
- 19. Hlaváč, M. and Rosa, T.: A Note on the Relay Attacks on e-passports: The Case of Czech e-passports, IACR ePrint Report 2007/244, 2007
- 20. ICAO International Civil Aviation Organization, <u>http://www.icao.int/</u>
- 21. Identity Theft MIFARE Campus Card Skimming Attack (EN titles), http://www.youtube.com/watch?v=NW3RGbQTLhE
- 22. Identity Theft Prague Citizen Card Skimming Attack (CZ titles), http://www.youtube.com/watch?v=Yxvy\_eGK5r4
- 23. Jelínek, L.: *Jádro systému Linux Kompletní průvodce programátora*, Computer Press, a.s., Brno 2008
- 24. Kasper, T.: *Embedded Security Analysis of RFID Devices*, Diploma Thesis, Ruhr-University Bochum, July 2006

- 25. Kfir, Z. and Wool, A.: *Picking Virtual Pockets using Relay Attacks on Contactless Smartcard Systems*, IACR ePrint Report 2005/052, 2005
- 26. Kirschenbaum, I. and Wool, A.: *How to Build a Low-Cost, Extended-Range RFID Skimmer*, USENIX 2006
- 27. Lee, Y.: *Antenna Circuit Design for RFID Applications*, Application Note 710, Microchip Tech. Inc., 2003
- 28. libnfc.org Public platform independent Near Field Communication (NFC) library, <u>www.libnfc.org</u>
- 29. Long range HF RFID demonstrator DEMO90121LR, Melexis, http://www.melexis.com/General/General/DEMO90121LR\_662.aspx
- 30. Menezes, A.-J., van Oorschot, P.-C., and Vanstone, S.-A.: *Handbook of Applied Cryptography*, CRC Press, 1996
- 31. Myslík, J.: *Elektromagnetické pole základy teorie*, BEN technická literatura, Praha 1998
- *Overview of Technical NFC Documents,* includes PN53x documentation catalogue, NXP, March 2009, <u>http://www.nxp.com/documents/other/nfc\_documentation\_overview.pdf</u>

- 33. *PKI for Machine Readable Travel Documents offering ICC Read-Only Access*, IACO, ver. 1.1, 2004
- 34. S2C Interface for NFC, Survey VI.0, Philips, 2005
- 35. PC/SC Workgroup Specifications, http://www.pcscworkgroup.com/specifications/overview.php
- Rosa, T.: *PicNic Yet Another Emulator/Spyware for HF RFID*, technical project 2008 2010, <u>http://crypto.hyperlink.cz/picnic.htm</u>
- 37. Rosa, T.: SCL3710 USB Dongle Config-based SHORT-CIRCUIT Found, libnfc developers forum, 2010, <u>http://www.libnfc.org/community/topic/194/scl3710-usb-dongle-configbased-shortcircuit-found/</u>
- 38. Rosa, T.: *Passive Target Mode Initialization \*Without\* Secondary Reader*, libnfc developers forum, 2010, <u>http://www.libnfc.org/community/topic/200/passive-target-mode-initialization-without-secondary-reader/</u>
- 39. Vinculum-I device datasheet, application notes, drivers, and prototyping boards, <u>http://www.ftdichip.com</u>
- 40. Weiss, M.: *Performing Relay Attacks on ISO 14443 Contactless Smart Cards using NFC Mobile Equipment*, Master's Thesis in Computer Science, Fakultät Für Informatik, Der Technischen Universität München, May 2010
- 41. Fleisch, D.: A Student's Guide to Maxwell's Equations, Cambridge University Press, New York 2008.

- 42. Pelly, N. and Hamilton, J.: *How to NFC*, Google I/O 2011, http://developer.android.com/videos/index.html#v=49L7z3rxz4Q
- 43. http://developer.android.com/guide/topics/nfc/index.html
- 44. Ankeny, J.: *Apple forgoes NFC m-payment integration with new iOS 5*, October 4, 2011, http://www.fiercemobilecontent.com/story/apple-forgoes-nfc-m-payment-integration-new-ios-5/2011-10-04
- 45. Evans, J.: *NFC: How Apple's iPhone gains on 'Google Wallet' plan*, October 26, 2011, http://blogs.computerworld.com/19162/nfc\_how\_apples\_using\_google\_for\_the\_iphone\_ wallet
- 46. http://www.icarte.ca/
- 47. Francis, L., Hancke, G., Mayes, K., and Markantonakis, K.: *Practical Relay Attack on Contactless Transactions by Using NFC Mobile Phones*, Cryptology ePrint Archive: Report 2011/618
- 48. Rosa, T.: *RFID Wormholes the Case of Contactless Smart Cards*, SmartCard Forum 2011
- 49. <u>http://crypto.hyperlink.cz/cryptoprax.htm</u>

- 50. Courtois, N.-T.: *The Dark Side of Security by Obscurity and Cloning MiFare Classic Rail and Building Passes Anywhere, Anytime*, rev. May 2009, http://eprint.iacr.org/2009/137
- 51. Garcia, F.-D., et al.: *Dismantling MIFARE Classic*, ESORICS 2008, pp. 97-114, 2008
- 52. Garcia, F.-D., et al.: *Wirelessly Pickpocketing a Mifare Classic Card*, IEEE S&P 09, May 2009
- 53. MIFARE MF1 IC S50, Philips Semiconductors, Rev. 5.1, May 2005
- 54. Nohl, K., et al.: *Reverse-Engineering a Cryptographic RFID Tag*, USENIX 2008
- 55. <u>http://code.google.com/p/crapto1/</u>
- 56. Specification Q5B ASIC for RFID, SID TAG Switzerland, SOKYMAT s.a., 2001
- 57. http://www.nfc-forum.org/specs/
- 58. Felt, A.-P., Finifter, M., Chin, E., Hanna, S., and Wagner, D.: A Survey of Mobile Malware in the Wild, SPSM'11, October 17, 2011
- 59. http://www.blackberry.com/developers/docs/7.0.0api/